Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
3.
Nat Biotechnol ; 41(3): 399-408, 2023 03.
Article in English | MEDLINE | ID: mdl-36593394

ABSTRACT

The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug-omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug-drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities.


Subject(s)
Deep Learning , Diabetes Mellitus, Type 2 , Humans , Algorithms , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics
4.
Immunology ; 168(4): 622-639, 2023 04.
Article in English | MEDLINE | ID: mdl-36273265

ABSTRACT

Autoimmune and autoinflammatory diseases (AIIDs) involve a deficit in an individual's immune system function, whereby the immune reaction is directed against self-antigens. Many AIIDs have a strong genetic component, but they can also be triggered by environmental factors. AIIDs often have a highly negative impact on the individual's physical and mental wellbeing. Understanding the genetic underpinning of AIIDs is thus crucial both for diagnosis and for identifying individuals at high risk of an AIID and mental illness as a result thereof. The aim of the present study was to perform systematic statistical and genetic analyses to assess the role of human leukocyte antigen (HLA) alleles in 30 AIIDs and to study the links between AIIDs and psychiatric disorders. We leveraged the Danish iPSYCH Consortium sample comprising 65 534 individuals diagnosed with psychiatric disorders or selected as part of a random population sample, for whom we also had genetic data and diagnoses of AIIDs. We employed regression analysis to examine comorbidities between AIIDs and psychiatric disorders and associations between AIIDs and HLA alleles across seven HLA genes. Our comorbidity analyses showed that overall AIID and five specific AIIDs were associated with having a psychiatric diagnosis. Our genetic analyses found 81 significant associations between HLA alleles and AIIDs. Lastly, we show connections across AIIDs, psychiatric disorders and infection susceptibility through network analysis of significant HLA associations in these disease classes. Combined, our results include both novel associations as well as replications of previously reported associations in a large sample, and highlight the genetic and epidemiological links between AIIDs and psychiatric disorders.


Subject(s)
Autoimmune Diseases , Hereditary Autoinflammatory Diseases , Mental Disorders , Humans , Genetic Predisposition to Disease , Immunogenetics , Alleles , Mental Disorders/epidemiology , Mental Disorders/genetics , Hereditary Autoinflammatory Diseases/genetics , Autoimmune Diseases/epidemiology , Autoimmune Diseases/genetics
5.
JAMA Psychiatry ; 80(2): 146-155, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36477816

ABSTRACT

Importance: Diagnoses and treatment of mental disorders are hampered by the current lack of objective markers needed to provide a more precise diagnosis and treatment strategy. Objective: To develop deep learning models to predict mental disorder diagnosis and severity spanning multiple diagnoses using nationwide register data, family and patient-specific diagnostic history, birth-related measurement, and genetics. Design, Setting, and Participants: This study was conducted from May 1, 1981, to December 31, 2016. For the analysis, which used a Danish population-based case-cohort sample of individuals born between 1981 and 2005, genotype data and matched longitudinal health register data were taken from the longitudinal Danish population-based Integrative Psychiatric Research Consortium 2012 case-cohort study. Included were individuals with mental disorders (attention-deficit/hyperactivity disorder [ADHD]), autism spectrum disorder (ASD), major depressive disorder (MDD), bipolar disorder (BD), schizophrenia spectrum disorders (SCZ), and population controls. Data were analyzed from February 1, 2021, to January 24, 2022. Exposure: At least 1 hospital contact with diagnosis of ADHD, ASD, MDD, BD, or SCZ. Main Outcomes and Measures: The predictability of (1) mental disorder diagnosis and (2) severity trajectories (measured by future outpatient hospital contacts, admissions, and suicide attempts) were investigated using both a cross-diagnostic and single-disorder setup. Predictive power was measured by AUC, accuracy, and Matthews correlation coefficient (MCC), including an estimate of feature importance. Results: A total of 63 535 individuals (mean [SD] age, 23 [7] years; 34 944 male [55%]; 28 591 female [45%]) were included in the model. Based on data prior to diagnosis, the specific diagnosis was predicted in a multidiagnostic prediction model including the background population with an overall area under the curve (AUC) of 0.81 and MCC of 0.28, whereas the single-disorder models gave AUCs/MCCs of 0.84/0.54 for SCZ, 0.79/0.41 for BD, 0.77/0.39 for ASD, 0.74/0.38, for ADHD, and 0.74/0.38 for MDD. The most important data sets for multidiagnostic prediction were previous mental disorders and age (11%-23% reduction in prediction accuracy when removed) followed by family diagnoses, birth-related measurements, and genetic data (3%-5% reduction in prediction accuracy when removed). Furthermore, when predicting subsequent disease trajectories of the disorder, the most severe cases were the most easily predictable, with an AUC of 0.72. Conclusions and Relevance: Results of this diagnostic study suggest the possibility of combining genetics and registry data to predict both mental disorder diagnosis and disorder progression in a clinically relevant, cross-diagnostic setting prior to clinical assessment.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Deep Learning , Depressive Disorder, Major , Humans , Male , Female , Young Adult , Adult , Cohort Studies , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/epidemiology , Autism Spectrum Disorder/genetics , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/epidemiology , Depressive Disorder, Major/genetics , Attention Deficit Disorder with Hyperactivity/diagnosis , Attention Deficit Disorder with Hyperactivity/epidemiology , Attention Deficit Disorder with Hyperactivity/genetics , Prognosis , Denmark/epidemiology
6.
Sci Adv ; 8(26): eabi7293, 2022 07.
Article in English | MEDLINE | ID: mdl-35767618

ABSTRACT

Currently, psychiatric diagnoses are, in contrast to most other medical fields, based on subjective symptoms and observable signs and call for new and improved diagnostics to provide the most optimal care. On the basis of a deep learning approach, we performed unsupervised patient stratification of 19,636 patients with depression [major depressive disorder (MDD)] and/or schizophrenia (SCZ) and 22,467 population controls from the iPSYCH2012 case cohort. We integrated data of disorder severity, history of mental disorders and disease comorbidities, genetics, and medical birth data. From this, we stratified the individuals in six and seven unique clusters for MDD and SCZ, respectively. When censoring data until diagnosis, we could predict MDD clusters with areas under the curve (AUCs) of 0.54 to 0.80 and SCZ clusters with AUCs of 0.71 to 0.86. Overall cases and controls could be predicted with an AUC of 0.81, illustrating the utility of data-driven subgrouping in psychiatry.


Subject(s)
Deep Learning , Depressive Disorder, Major , Schizophrenia , Depression/genetics , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/genetics , Humans , Registries , Schizophrenia/diagnosis , Schizophrenia/genetics
7.
J Transl Med ; 19(1): 230, 2021 05 31.
Article in English | MEDLINE | ID: mdl-34059071

ABSTRACT

BACKGROUND: Infections are a major disease burden worldwide. While they are caused by external pathogens, host genetics also plays a part in susceptibility to infections. Past studies have reported diverse associations between human leukocyte antigen (HLA) alleles and infections, but many were limited by small sample sizes and/or focused on only one infection. METHODS: We performed an immunogenetic association study examining 13 categories of severe infection (bacterial, viral, central nervous system, gastrointestinal, genital, hepatitis, otitis, pregnancy-related, respiratory, sepsis, skin infection, urological and other infections), as well as a phenotype for having any infection, and seven classical HLA loci (HLA-A, B, C, DPB1, DQA1, DQB1 and DRB1). Additionally, we examined associations between infections and specific alleles highlighted in our previous studies of psychiatric disorders and autoimmune disease, as these conditions are known to be linked to infections. RESULTS: Associations between HLA loci and infections were generally not strong. Highlighted associations included associations between DQB1*0302 and DQB1*0604 and viral infections (P = 0.002835 and P = 0.014332, respectively), DQB1*0503 and sepsis (P = 0.006053), and DQA1*0301 with "other" infections (a category which includes infections not included in our main categories e.g. protozoan infections) (P = 0.000369). Some HLA alleles implicated in autoimmune diseases showed association with susceptibility to infections, but the latter associations were generally weaker, or with opposite trends (in the case of HLA-C alleles, but not with alleles of HLA class II genes). HLA alleles associated with psychiatric disorders did not show association with susceptibility to infections. CONCLUSIONS: Our results suggest that classical HLA alleles do not play a large role in the etiology of severe infections. The discordant association trends with autoimmune disease for some alleles could contribute to mechanistic theories of disease etiology.


Subject(s)
HLA-A Antigens , Mental Disorders , Alleles , Gene Frequency , Genetic Predisposition to Disease , HLA-A Antigens/genetics , HLA-DQ beta-Chains/genetics , HLA-DRB1 Chains/genetics , Haplotypes , Humans , Mental Disorders/genetics
9.
Nat Biotechnol ; 39(5): 555-560, 2021 05.
Article in English | MEDLINE | ID: mdl-33398153

ABSTRACT

Despite recent advances in metagenomic binning, reconstruction of microbial species from metagenomics data remains challenging. Here we develop variational autoencoders for metagenomic binning (VAMB), a program that uses deep variational autoencoders to encode sequence coabundance and k-mer distribution information before clustering. We show that a variational autoencoder is able to integrate these two distinct data types without any previous knowledge of the datasets. VAMB outperforms existing state-of-the-art binners, reconstructing 29-98% and 45% more near-complete (NC) genomes on simulated and real data, respectively. Furthermore, VAMB is able to separate closely related strains up to 99.5% average nucleotide identity (ANI), and reconstructed 255 and 91 NC Bacteroides vulgatus and Bacteroides dorei sample-specific genomes as two distinct clusters from a dataset of 1,000 human gut microbiome samples. We use 2,606 NC bins from this dataset to show that species of the human gut microbiome have different geographical distribution patterns. VAMB can be run on standard hardware and is freely available at https://github.com/RasmussenLab/vamb .


Subject(s)
Genome, Bacterial/genetics , Metagenome/genetics , Molecular Sequence Annotation , Software , Bacteroides/genetics , Humans , Metagenomics , Microbiota/genetics
10.
Nat Med ; 27(3): 515-525, 2021 03.
Article in English | MEDLINE | ID: mdl-33479501

ABSTRACT

Personal neoantigen vaccines have been envisioned as an effective approach to induce, amplify and diversify antitumor T cell responses. To define the long-term effects of such a vaccine, we evaluated the clinical outcome and circulating immune responses of eight patients with surgically resected stage IIIB/C or IVM1a/b melanoma, at a median of almost 4 years after treatment with NeoVax, a long-peptide vaccine targeting up to 20 personal neoantigens per patient ( NCT01970358 ). All patients were alive and six were without evidence of active disease. We observed long-term persistence of neoantigen-specific T cell responses following vaccination, with ex vivo detection of neoantigen-specific T cells exhibiting a memory phenotype. We also found diversification of neoantigen-specific T cell clones over time, with emergence of multiple T cell receptor clonotypes exhibiting distinct functional avidities. Furthermore, we detected evidence of tumor infiltration by neoantigen-specific T cell clones after vaccination and epitope spreading, suggesting on-target vaccine-induced tumor cell killing. Personal neoantigen peptide vaccines thus induce T cell responses that persist over years and broaden the spectrum of tumor-specific cytotoxicity in patients with melanoma.


Subject(s)
Antigens, Neoplasm/genetics , Cancer Vaccines/immunology , Epitopes/immunology , Immunologic Memory , Melanoma/immunology , Humans , Melanoma/pathology
11.
Brain Behav Immun ; 91: 10-23, 2021 01.
Article in English | MEDLINE | ID: mdl-32534018

ABSTRACT

BACKGROUND: Previous studies have indicated the bidirectionality between autoimmune and mental disorders. However, genetic studies underpinning the co-occurrence of the two disorders have been lacking. In this study, we examined the potential genetic contribution to the association between autoimmune and mental disorders and investigated the genetic basis of overall autoimmune disease. METHODS: We used diagnostic information from patients with seven autoimmune diseases and six mental disorders from the Danish population-based case-cohort sample (iPSYCH2012). We explored the epidemiological association using survival analysis and modelled the effect of polygenic risk scores (PRSs) on autoimmune and mental diseases. Genetic factors were investigated using GWAS and imputed HLA alleles in the iPSYCH cohort. RESULTS: Of 64,039 individuals, a total of 43,902 (68.6%) were diagnosed with mental disorders and 1383 (2.2%) with autoimmune diseases. There was a significant comorbidity between the two disease classes (P = 2.67 × 10-7, OR = 1.38, 95%CI = 1.22-1.56), with an overall bidirectional association, wherein individuals with autoimmune diseases had an increased risk of subsequent mental disorders (HR = 1.13, 95%CI: 1.07-1.21, P = 7.95 × 10-5) and vice versa (HR = 1.27, 95%CI = 1.16-1.39, P = 8.77 × 10-15). Adding PRSs to these adjustment models did not have an impact on the associations. PRSs for autoimmune diseases were only slightly associated with increased risk of mental disorders (HR = 1.01, 95%CI: 1.00-1.02, p = 0.038), whereas PRSs for mental disorders were not associated with autoimmune diseases overall. Our GWAS highlighted 12 loci on chromosome 6 (minimum P = 2.74 × 10-36, OR = 1.80, 95% CI: 1.64-1.96), which were implicated in gene regulation through bioinformatic functional analyses, thereby identifying new candidate genes for overall autoimmune disease. Moreover, we observed 20 human leukocyte antigen (HLA) alleles strongly associated, either positively or negatively, with overall autoimmune disease, but we did not find significant evidence of their associations with overall mental disorders. A GWAS of a comorbid diagnosis of an autoimmune disease and a mental disorder identified a genome-wide significant locus on chromosome 7 as well (P = 1.43 × 10-8, OR = 10.65, 95%CI = 3.21-35.36). CONCLUSIONS: Our findings confirm the overall comorbidity and bidirectionality between autoimmune diseases and mental disorders and identify HLA genes which are significantly associated with overall autoimmune disease. Additionally, we identified several new candidate genes for overall autoimmune disease and ranked them based on their association with the investigated diseases.


Subject(s)
Autoimmune Diseases , Mental Disorders , Psychotic Disorders , Autoimmune Diseases/epidemiology , Autoimmune Diseases/genetics , Comorbidity , Denmark/epidemiology , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Mental Disorders/epidemiology , Mental Disorders/genetics , Polymorphism, Single Nucleotide
12.
Bioinformatics ; 37(5): 705-710, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33031509

ABSTRACT

SUMMARY: Here, we present an automated pipeline for Download Of NCBI Entries (DONE) and continuous updating of a local sequence database based on user-specified queries. The database can be created with either protein or nucleotide sequences containing all entries or complete genomes only. The pipeline can automatically clean the database by removing entries with matches to a database of user-specified sequence contaminants. The default contamination entries include sequences from the UniVec database of plasmids, marker genes and sequencing adapters from NCBI, an E.coli genome, rRNA sequences, vectors and satellite sequences. Furthermore, duplicates are removed and the database is automatically screened for sequences from green fluorescent protein, luciferase and antibiotic resistance genes that might be present in some GenBank viral entries, and could lead to false positives in virus identification. For utilizing the database, we present a useful opportunity for dealing with possible human contamination. We show the applicability of DONE by downloading a virus database comprising 37 virus families. We observed an average increase of 16 776 new entries downloaded per month for the 37 families. In addition, we demonstrate the utility of a custom database compared to a standard reference database for classifying both simulated and real sequence data. AVAILABILITYAND IMPLEMENTATION: The DONE pipeline for downloading and cleaning is deposited in a publicly available repository (https://bitbucket.org/genomicepidemiology/done/src/master/). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Databases, Genetic , Databases, Nucleic Acid , Genome , Humans , Proteins
14.
J Antimicrob Chemother ; 75(12): 3491-3500, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32780112

ABSTRACT

OBJECTIVES: WGS-based antimicrobial susceptibility testing (AST) is as reliable as phenotypic AST for several antimicrobial/bacterial species combinations. However, routine use of WGS-based AST is hindered by the need for bioinformatics skills and knowledge of antimicrobial resistance (AMR) determinants to operate the vast majority of tools developed to date. By leveraging on ResFinder and PointFinder, two freely accessible tools that can also assist users without bioinformatics skills, we aimed at increasing their speed and providing an easily interpretable antibiogram as output. METHODS: The ResFinder code was re-written to process raw reads and use Kmer-based alignment. The existing ResFinder and PointFinder databases were revised and expanded. Additional databases were developed including a genotype-to-phenotype key associating each AMR determinant with a phenotype at the antimicrobial compound level, and species-specific panels for in silico antibiograms. ResFinder 4.0 was validated using Escherichia coli (n = 584), Salmonella spp. (n = 1081), Campylobacter jejuni (n = 239), Enterococcus faecium (n = 106), Enterococcus faecalis (n = 50) and Staphylococcus aureus (n = 163) exhibiting different AST profiles, and from different human and animal sources and geographical origins. RESULTS: Genotype-phenotype concordance was ≥95% for 46/51 and 25/32 of the antimicrobial/species combinations evaluated for Gram-negative and Gram-positive bacteria, respectively. When genotype-phenotype concordance was <95%, discrepancies were mainly linked to criteria for interpretation of phenotypic tests and suboptimal sequence quality, and not to ResFinder 4.0 performance. CONCLUSIONS: WGS-based AST using ResFinder 4.0 provides in silico antibiograms as reliable as those obtained by phenotypic AST at least for the bacterial species/antimicrobial agents of major public health relevance considered.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Animals , Anti-Bacterial Agents/pharmacology , Genotype , Humans , Microbial Sensitivity Tests , Phenotype
15.
Sci Rep ; 10(1): 3033, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32080241

ABSTRACT

Knowledge about the difference in the global distribution of pathogens and non-pathogens is limited. Here, we investigate it using a multi-sample metagenomics phylogeny approach based on short-read metagenomic sequencing of sewage from 79 sites around the world. For each metagenomic sample, bacterial template genomes were identified in a non-redundant database of whole genome sequences. Reads were mapped to the templates identified in each sample. Phylogenetic trees were constructed for each template identified in multiple samples. The countries from which the samples were taken were grouped according to different definitions of world regions. For each tree, the tendency for regional clustering was determined. Phylogenetic trees representing 95 unique bacterial templates were created covering 4 to 71 samples. Varying degrees of regional clustering could be observed. The clustering was most pronounced for environmental bacterial species and human commensals, and less for colonizing opportunistic pathogens, opportunistic pathogens and pathogens. No pattern of significant difference in clustering between any of the organism classifications and country groupings according to income were observed. Our study suggests that while the same bacterial species might be found globally, there is a geographical regional selection or barrier to spread for individual clones of environmental and human commensal bacteria, whereas this is to a lesser degree the case for strains and clones of human pathogens and opportunistic pathogens.


Subject(s)
Bacteria/classification , Disease , Geography , Metagenomics , Phylogeny , Sewage/microbiology , Bacteria/genetics , Cluster Analysis , Databases, Genetic , Genome, Bacterial , Humans , Templates, Genetic
16.
Nat Protoc ; 14(8): 2571-2594, 2019 08.
Article in English | MEDLINE | ID: mdl-31341290

ABSTRACT

RNase H-dependent PCR-enabled T-cell receptor sequencing (rhTCRseq) can be used to determine paired alpha/beta T-cell receptor (TCR) clonotypes in single cells or perform alpha and beta TCR repertoire analysis in bulk RNA samples. With the enhanced specificity of RNase H-dependent PCR (rhPCR), it achieves TCR-specific amplification and addition of dual-index barcodes in a single PCR step. For single cells, the protocol includes sorting of single cells into plates, generation of cDNA libraries, a TCR-specific amplification step, a second PCR on pooled sample to generate a sequencing library, and sequencing. In the bulk method, sorting and cDNA library steps are replaced with a reverse-transcriptase (RT) reaction that adds a unique molecular identifier (UMI) to each cDNA molecule to improve the accuracy of repertoire-frequency measurements. Compared to other methods for TCR sequencing, rhTCRseq has a streamlined workflow and the ability to analyze single cells in 384-well plates. Compared to TCR reconstruction from single-cell transcriptome sequencing data, it improves the success rate for obtaining paired alpha/beta information and ensures recovery of complete complementarity-determining region 3 (CDR3) sequences, a prerequisite for cloning/expression of discovered TCRs. Although it has lower throughput than droplet-based methods, rhTCRseq is well-suited to analysis of small sorted populations, especially when analysis of 96 or 384 single cells is sufficient to identify predominant T-cell clones. For single cells, sorting typically requires 2-4 h and can be performed days, or even months, before library construction and data processing, which takes ~4 d; the bulk RNA protocol takes ~3 d.


Subject(s)
Polymerase Chain Reaction/methods , RNA, Messenger/genetics , Receptors, Antigen, T-Cell/genetics , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Cells, Cultured , Cloning, Molecular , Humans , RNA, Messenger/metabolism , Receptors, Antigen, T-Cell/metabolism , Ribonuclease H/metabolism , T-Lymphocytes/chemistry , T-Lymphocytes/cytology
17.
Eur J Hum Genet ; 27(9): 1445-1455, 2019 09.
Article in English | MEDLINE | ID: mdl-30976114

ABSTRACT

Human leukocyte antigen (HLA) genes encode proteins with important roles in the regulation of the immune system. Many studies have also implicated HLA genes in psychiatric and neurodevelopmental disorders. However, these studies usually focus on one disorder and/or on one HLA candidate gene, often with small samples. Here, we access a large dataset of 65,534 genotyped individuals consisting of controls (N = 19,645) and cases having one or more of autism spectrum disorder (N = 12,331), attention deficit hyperactivity disorder (N = 14,397), schizophrenia (N = 2401), bipolar disorder (N = 1391), depression (N = 18,511), anorexia (N = 2551) or intellectual disability (N = 3175). We imputed participants' HLA alleles to investigate the involvement of HLA genes in these disorders using regression models. We found a pronounced protective effect of DPB1*1501 on susceptibility to autism (p = 0.0094, OR = 0.72) and intellectual disability (p = 0.00099, OR = 0.41), with an increased protective effect on a comorbid diagnosis of both disorders (p = 0.003, OR = 0.29). We also identified a risk allele for intellectual disability, B*5701 (p = 0.00016, OR = 1.33). Associations with both alleles survived FDR correction and a permutation procedure. We did not find significant evidence for replication of previously-reported associations for autism or schizophrenia. Our results support an implication of HLA genes in autism and intellectual disability, which requires replication by other studies. Our study also highlights the importance of large sample sizes in HLA association studies.


Subject(s)
Disease Susceptibility/immunology , Mental Disorders/etiology , Alleles , Denmark/epidemiology , Exome , Genetic Predisposition to Disease , Genetic Testing , HLA Antigens/genetics , Humans , Immunogenetics , Mental Disorders/diagnosis , Mental Disorders/epidemiology , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/epidemiology , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/immunology , Polymorphism, Single Nucleotide , Population Surveillance
18.
Nature ; 565(7738): 234-239, 2019 01.
Article in English | MEDLINE | ID: mdl-30568305

ABSTRACT

Neoantigens, which are derived from tumour-specific protein-coding mutations, are exempt from central tolerance, can generate robust immune responses1,2 and can function as bona fide antigens that facilitate tumour rejection3. Here we demonstrate that a strategy that uses multi-epitope, personalized neoantigen vaccination, which has previously been tested in patients with high-risk melanoma4-6, is feasible for tumours such as glioblastoma, which typically have a relatively low mutation load1,7 and an immunologically 'cold' tumour microenvironment8. We used personalized neoantigen-targeting vaccines to immunize patients newly diagnosed with glioblastoma following surgical resection and conventional radiotherapy in a phase I/Ib study. Patients who did not receive dexamethasone-a highly potent corticosteroid that is frequently prescribed to treat cerebral oedema in patients with glioblastoma-generated circulating polyfunctional neoantigen-specific CD4+ and CD8+ T cell responses that were enriched in a memory phenotype and showed an increase in the number of tumour-infiltrating T cells. Using single-cell T cell receptor analysis, we provide evidence that neoantigen-specific T cells from the peripheral blood can migrate into an intracranial glioblastoma tumour. Neoantigen-targeting vaccines thus have the potential to favourably alter the immune milieu of glioblastoma.


Subject(s)
Antigens, Neoplasm/immunology , Cancer Vaccines/immunology , Glioblastoma/immunology , Glioblastoma/therapy , T-Lymphocytes/immunology , Adult , Aged , DNA Methylation , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Dexamethasone/administration & dosage , Glioblastoma/diagnosis , Glioblastoma/genetics , Humans , Middle Aged , Promoter Regions, Genetic/genetics , Receptors, Antigen, T-Cell/immunology , Tumor Suppressor Proteins/genetics , Young Adult
19.
mSphere ; 3(1)2018.
Article in English | MEDLINE | ID: mdl-29468193

ABSTRACT

Typing of methicillin-resistant Staphylococcus aureus (MRSA) is important in infection control and surveillance. The current nomenclature of MRSA includes the genetic background of the S. aureus strain determined by multilocus sequence typing (MLST) or equivalent methods like spa typing and typing of the mobile genetic element staphylococcal cassette chromosome mec (SCCmec), which carries the mecA or mecC gene. Whereas MLST and spa typing are relatively simple, typing of SCCmec is less trivial because of its heterogeneity. Whole-genome sequencing (WGS) provides the essential data for typing of the genetic background and SCCmec, but so far, no bioinformatic tools for SCCmec typing have been available. Here, we report the development and evaluation of SCCmecFinder for characterization of the SCCmec element from S. aureus WGS data. SCCmecFinder is able to identify all SCCmec element types, designated I to XIII, with subtyping of SCCmec types IV (2B) and V (5C2). SCCmec elements are characterized by two different gene prediction approaches to achieve correct annotation, a Basic Local Alignment Search Tool (BLAST)-based approach and a k-mer-based approach. Evaluation of SCCmecFinder by using a diverse collection of clinical isolates (n = 93) showed a high typeability level of 96.7%, which increased to 98.9% upon modification of the default settings. In conclusion, SCCmecFinder can be an alternative to more laborious SCCmec typing methods and is freely available at https://cge.cbs.dtu.dk/services/SCCmecFinder. IMPORTANCE SCCmec in MRSA is acknowledged to be of importance not only because it contains the mecA or mecC gene but also for staphylococcal adaptation to different environments, e.g., in hospitals, the community, and livestock. Typing of SCCmec by PCR techniques has, because of its heterogeneity, been challenging, and whole-genome sequencing has only partially solved this since no good bioinformatic tools have been available. In this article, we describe the development of a new bioinformatic tool, SCCmecFinder, that includes most of the needs for infection control professionals and researchers regarding the interpretation of SCCmec elements. The software detects all of the SCCmec elements accepted by the International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements, and users will be prompted if diverging and potential new elements are uploaded. Furthermore, SCCmecFinder will be curated and updated as new elements are found and it is easy to use and freely accessible.

20.
Malar J ; 17(1): 91, 2018 Feb 23.
Article in English | MEDLINE | ID: mdl-29471822

ABSTRACT

BACKGROUND: Plasmodium falciparum malaria remains a major health burden and genomic research represents one of the necessary approaches for continued progress towards malaria control and elimination. Sample acquisition for this purpose is troublesome, with the majority of malaria-infected individuals living in rural areas, away from main infrastructure and the electrical grid. The aim of this study was to describe a low-tech procedure to sample P. falciparum specimens for direct whole genome sequencing (WGS), without use of electricity and cold-chain. METHODS: Venous blood samples were collected from malaria patients in Bandim, Guinea-Bissau and leukocyte-depleted using Plasmodipur filters, the enriched parasite sample was spotted on Whatman paper and dried. The samples were stored at ambient temperatures and subsequently used for DNA-extraction. Ratios of parasite:human content of the extracted DNA was assessed by qPCR, and five samples with varying parasitaemia, were sequenced. Sequencing data were used to analyse the sample content, as well as sample coverage and depth as compared to the 3d7 reference genome. RESULTS: qPCR revealed that 73% of the 199 samples were applicable for WGS, as defined by a minimum ratio of parasite:human DNA of 2:1. WGS revealed an even distribution of sequence data across the 3d7 reference genome, regardless of parasitaemia. The acquired read depths varied from 16 to 99×, and coverage varied from 87.5 to 98.9% of the 3d7 reference genome. SNP-analysis of six genes, for which amplicon sequencing has been performed previously, confirmed the reliability of the WGS-data. CONCLUSION: This study describes a simple filter paper based protocol for sampling P. falciparum from malaria patients for subsequent direct WGS, enabling acquisition of samples in remote settings with no access to electricity.


Subject(s)
Desiccation , Erythrocytes/parasitology , Plasmodium falciparum/genetics , Specimen Handling/methods , Whole Genome Sequencing/methods , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , DNA, Protozoan/isolation & purification , Guinea-Bissau , Humans , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...